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bosons representing the two transverse coordinates of 4-d spacetime in the light-cone
formalism. This construction is described in detail in refs4{7; we will, for the most part,
follow the notation and conventions of refs.7,1

Models are conveniently speci�ed by their one-loop partition functions, which
include all the spacetime particle spectrum; these involve a sum over spin structures:

Zfermion =
X
�;�

C�
� Z

�
� ; (1)

where the C�
� 's are numerical coeÆcients, while � and � are 64-dimensional vectors

labeling di�erent choices of boundary conditions for the fermions around the two in-
dependent cycles of the worldsheet torus. For each real fermion there are two possible
choices of boundary conditions around a given cycle: either periodic (Ramond) or an-
tiperiodic (Neveu-Schwarz). However for �xed � and � the real fermions always pair up
into either Majorana or Weyl fermions; if a particular Weyl pairing occurs consistently
across all � and �, then this pair can be regarded as a single complex fermion. For such
complex fermions more general boundary conditions { any rational \twists" { are then
allowed.4,6,8 A useful notation denotes a complex Ramond fermion as a �1=2 twist,
while a general m=n twist indicates the complex fermion boundary condition

 ! exp
�
2�i

m

n

�
 : (2)

The contribution of any sector � to the partition function contains a generalized
GSO projection operator. Up to an overall constant, this is given by:

X
�

C�
� exp

h
�2�i� � N̂(�)

i
; (3)

where N̂ (�) is the fermion number operator de�ned in the sector �. There are subtleties

in the proper de�nition of N̂(�) for real Ramond fermions; these are discussed in ref.
[7]. Thus building a fermionic string model amounts to choosing an appropriate set of
�'s, �'s, and C�

� 's, then performing the GSO projections to �nd the physical spectrum.
These choices are greatly constrained by the requirement of modular invariance of
the one-loop partition function; in addition, higher loop modular invariance imposes a
factorization condition on the C�

� 's. Together these requirements imply that the f�g
are the same set of vectors as the f�g, and that, if two sectors �1 and �2 appear in the
partition function, then the sector �1 + �2 must also appear. These facts allow one to
specify the full set of �'s and �'s by a list of \basis vectors", denoted Vi, and we will later
express � in terms of these basis vectors with coeÆcients �i. The C�

� 's parametrizing
the generalized GSO projection operators in eq. (3) can also be reexpressed in the same
basis in terms of new parameters kij ; these are discussed in [4].

Models that consist of real fermions can have higher level Kac{Moody algebra
and gauge group of rank lower than 22, which is an advantage if one wants to build up
a realistic model. However, the spacetime particle spectrum in such models are gener-
ally realized in rather intricate fashion, and quite di�erent from level one models. For



example, the 45 gauge bosons of SO(10) at level 2 in the model we will later present
reside in both the untwisted sector and 7 other twisted sectors. Furthermore, there are
probably 200 twisted sectors containing massless spectrum before GSO projection in a
typical model of three generations of chiral fermions 16L. Fortunately, these complica-
tions and tedious checks can be easily handled within seconds by our newly developed
symbolic manipulation computer package. The details regarding this package will be
explained in our later publication.9

Equipped with this powerful tool, one can start to explore the string vacua which
incorporate a considerable amount of low{energy phenomenology input. Studies along
this direction can help us to extract some interesting features about true string vacua
which are closer to nature, and it may also reveal hints for eventual non-perturbative
formulation of string theory. To give one example besides models with three generations
of chiral fermions and adjoint scalars,3 we will present a model with N=1 spacetime
SUSY, three generations of chiral fermions in gauge group SO(10) at level two, and
no moduli (except dilaton). Moreover, we will show, from this SO(10) model, one can
obtain a model of SU(5) at level two with three chiral 10s by just tuning parameters
kij in the GSO projection operators.

The �rst model has basis vectors V0 { V9 speci�ed as follows:

V0 = (11111111111111111111k111111111111j11111111111111j111111111111111111)

V1 = (11100100100100100100k000000000000j00000000000000j000000000000000000)

V2 = (00000000000000000000k111111110000j11111111000000j000000000000000000)

V3 = (00000000000000000000k000000000000j00001111111100j000000000000000000)

V4 = (00000000000000000000k110000111111j11001100110011j000000000000000000)

V5 = (11100100010010010010k111100001100j10101010101010j111000000000000000)

V6 = (11010010100100001001k111100001100j10100101101001j000001110000000000)

V7 = (11001001001001100100k111100001100j11110000111100j000000001100000000)

V8 = (001011011101100+�0+�k00000000++++j01010101010101j000111++++++��0000)

V9 = (00+�0+�0++1++1000000k000000000000j00001111000011j0011001100++++++++)

\1" in the above vectors denote the value \�1=2", and \�" denote the values of
\�1=4". The �rst 20 components up to the double vertical lines denote the boundary
conditions for the right-moving fermions. The �rst pair of right-movers are spacetime
fermions (corresponding to the superpartners of the two transverse directions in 4-
d), while the other 18 right-movers are \internal". The remaining 44 components are
left-movers. The �rst 12 components on the right of the double vertical lines denote
the quantum numbers under SO(10) � U(1), and the second 14 components are real
fermions necessary for this particular SO(10) embedding.

In fermionic string models, there exists an \untwisted sector", with 64 Neveu-
Schwarz Weyl fermions. The untwisted sector contains the graviton, dilaton, antisym-
metric tensor �eld, and some of the gauge bosons. The requirement of a worldsheet
supercurrent constructed out of the right-movers and the spacetime bosons is a con-
sistency constraint on model building. As a result, V1 contains massless gravitinos,
corresponding to an N=4 spacetime supersymmetry before the GSO projection. After



the projection one only has N=1 spacetime SUSY. Superpartners of states in some
sector � will be found in V1+�. V0 is required in all fermionic string models by modu-
lar invariance. To produce a model with SO(10)�U(1) and three generations of chiral
fermions, we also have to choose kij with i > j > 0 or i = j = 0,

k00 = 1=2; k61 = 1=2; k73 = 1=2; k83 = 1=2; k86 = 1=2; and the rest = 0: (4)

The 45 gauge bosons of SO(10) at level 2 reside in the untwisted sector, V2, V3,
V4, V2 + V3, V2 + V4, V3 + V4, and V2 + V3 + V4. One can check that the root vectors
forming from the \fermionic charges" associated with the �rst 12 left-moving fermions,
or �rst six complex fermions, do have length 1; thus it is a level 2 Kac{Moody algebra.
Three generations of 16L are contained in fV5; V6; V7g+ f0; V2; V4; V2+V3; V2+V4; V3+
V4; V2+V3+V4g. Notice that V5;6;7+V3 are projected out. In this model, the observable
gauge group is SO(10) � U(1)4, and the hidden gauge group is U(1)3 � U(2). There
are no moduli in this model, i.e., no gauge singlet with respect to both observable
and hidden sectors. However, we do have 8 states, half of them contained in V3 and
the other half in V3 + 2 � V9, which are gauge singlets with respect to the observable
gauge group but not gauge singlets under the hidden gauge group. It is worthwhile to
point out that in this construction one uses 26 fermions with central charge c = 13 to
construct a conformal �eld theory based on Kac{Moody algebra of SO(10) at level 2
tensoring U(1), whose total central charge is c = 10. The precise form of the remaining
chiral algebra could be worked out.

Now if one chooses the same set of kij values except changing k93 = 1=2, one would
obtain a model with observable gauge group SU(5) � U(1)5, while the hidden gauge
group is unchanged. The gauge bosons associated with V3; V2+V3; V3+V4; V2+V3+V4
do not pass the GSO projection. The remaining gauge bosons form exactly the root
lattice of SU(5), and the level is still 2 because the root length is unchanged. It is
interesting to point out that the original 16L's of SO(10) from V5;6 and their gauge
partners become 10L+�5L+1L of SU(5), while the 16L from V7 become 10L+�5R+1R,
and an additional �5L + 1L appears in V7 + V9 + fV2 + V3; V3 + V4; V2 + V3 + V4g.

Our experience in model building tells us that it is not diÆcult to get models
with three generations of chiral fermions with adjoint Higgs, or with no moduli, or
with only one Yukawa coupling to the third generation. But it may take some e�ort to
construct a model with all the desired features.
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